The search functionality is under construction.

Author Search Result

[Author] Makoto ANDO(135hit)

41-60hit(135hit)

  • Equivalent Edge Currents by the Modified Edge Representation: Physical Optics Components

    Tsutomu MURASAKI  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:5
      Page(s):
    617-626

    The method of equivalent edge currents (MEC) has some ambiguity about definition of edge currents at general edge points except for diffraction points. The modified edge representation is introduced to overcome this ambiguity. The modified edge is the fictitious one which is defined so as to satisfy the diffraction law for given directions of incidence and observation. The equivalent edge currents for physical optics (PO) components at general edge points are obtained by utilizing these fictitious edges and the classical Keller's diffraction coefficients. High potentials of these currents are numerically demonstrated for diffraction from a disk, a square plate and a parabolic reflector.

  • A Single-Layer Multiple-Way Power Divider for a Planar Slotted Waveguide Array

    Jiro HIROKAWA  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E75-B No:8
      Page(s):
    781-787

    The authors design a simple feed system for a planar slotted waveguide array. A waveguide π-junction with negligible reflection is cascaded to compose a multiple-way power divider. The frequency characteristics of the power divided to each port and the reflection at the feed point are discussed and high performances are predicted. The maximum number of cascaded junctions in this system can be determined in terms of a desired frequency bandwidth and allowable deviation in divided power.

  • Line Integral Representation for Diffracted Fields in Physical Optics Approximation Based on Field Equivalence Principle and Maggi-Rubinowicz Transformation

    Ken-ichi SAKINA  Makoto ANDO  

     
    PAPER-EM Theory

      Vol:
    E84-B No:9
      Page(s):
    2589-2596

    This paper first gives the exact surface integral representation for PO diffracted electromagnetic fields from bounded flat plate through the deformations of the original surface by using field equivalence principle. This exact representation with the surface integral can be approximately reduced to novel line integral along the boundary of the plate by the use of Maggi-Rubinowicz transformation, which keeps a high accuracy even in near zone. Numerical results for the scattering of the electric dipole wave from the square planar plate are presented for demonstrating the accuracy.

  • Mathematical Derivation of Modified Edge Representation for Reduction of Surface Radiation Integral

    Ken-ichi SAKINA  Suomin CUI  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E84-C No:1
      Page(s):
    74-83

    Modified Edge Representation (MER) empirically proposed by one of the authors is the line integral representation for computing surface radiation integrals of diffraction. It has remarkable accuracy in surface to line integral reduction even for sources very close to the scatterer. It also overcomes false and true singularities in equivalent edge currents. This paper gives the mathematical derivation of MER by using Stokes' theorem; MER is not only asymptotic but also global approximation. It proves remarkable applicability of MER, that is, to smooth curved surface, closely located sources and arbitrary currents which are irrelevant to Maxwell equations.

  • A Two-Beam Waveguide Slot Array with Sidelobe Suppression

    Yuichi KIMURA  Hiroshi SHINODA  Kenta WATANABE  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:4
      Page(s):
    1070-1078

    A low sidelobe two-beam waveguide slot array is designed and measured. The antenna structure should be symmetrical for realizing two symmetrical beams which imposes restriction in slot design for the sidelobe and the gain. The slot coupling distribution is optimized numerically for side-lobe suppression under the condition of the structural symmetry. The first side-lobe level is minimized for the specific antenna efficiency in the continuous source model. This synthesis is reinforced by the full wave slot analysis using the method of moments. The design is confirmed by experiments using a one-dimensional array at 12 GHz and the good agreements between the predictions and the measurements are observed.

  • Practical Slot Array Design by Method of Moments Using One Basis Function and Constant Correction Length

    Jae-Ho LEE  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    158-165

    Method of moments (MoM) is an efficient design and analysis method for waveguide slot arrays. A rectangular entire-domain basis function is one of the most popular approximations for the slot aperture fields. MoM with only one basis function does not provide sufficient accuracy and the use of higher order mode of basis functions is inevitable to guarantee accuracy. However, including the higher order modes in MoM results in a rapid increase in the computational time as well as the analysis complexity; this is a serious drawback especially in the slot parameter optimization. The authors propose the slot correction length that compensates for the omission of higher order mode of basis functions. This length is constant for a wide range of couplings and frequency bands for various types of slots. The validity and universality of the concept of slot correction length are demonstrated for various slots and slot parameters. Practical slot array design can be drastically simplified by the use of MoM with only one basis function together with the slot correction length. As an example, a linear waveguide array of reflection-cancelling slot pairs is successfully designed.

  • Fresnel Zone Criterion to Implement Locality in the Method of Moments and PO-MoM Hybrid Method for the Reduction of Unknowns

    Keita ITO  Tetsu SHIJO  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:1
      Page(s):
    72-79

    Locality of high frequency electromagnetic scattering phenomena is embodied and imported to the Method of Moments (MoM) to reduce computational load. The proposed method solves currents on small areas only around inner and edge stationary phase points (SPPs) on the scatterer surfaces. The range of MoM area is explicitly specified in terms of Fresnel zone number as a function of frequency, source and observer positions. Based upon this criterion, scatterer of arbitrary size and shape can be solved with almost frequency independent number of unknowns. In some special cases like focusing systems, locality disappears and the method reduces to the standard MoM. The hybrid method called PO-MoM is complementarily introduced to cope with these cases, where Fresnel zone number with analogous but different definition is used. The selective use of Local-MoM and PO-MoM provides frequency insensitive number of unknowns for general combination of source and observation points. Numerical examples of RCS calculation for two dimensional flat and curved surfaces are presented to demonstrate the accuracy and reduction of unknowns of this method. The Fresnel zone, introduced in the scattering analysis for the first time, is a useful indicator of the locality or the boundary for MoM areas.

  • Reflection Characteristics of Center-Feed Single-Layer Waveguide Arrays

    Yasuhiro TSUNEMITSU  SeHyun PARK  Jiro HIROKAWA  Makoto ANDO  Yohei MIURA  Yasuhiro KAZAMA  Naohisa GOTO  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2313-2319

    The reflection characteristics of large alternating-phase fed single-layer waveguide arrays with center-feeds are investigated to identify the mechanism for bandwidth narrowing effects. Firstly, the overall reflection for the whole array is analyzed by FEM and fine agreement with measurements is demonstrated. It is deviating from the conventional prediction based upon a simple sum of reflections from components in the array, such as the multiple-way power divider, the slot waveguides and the aperture at the antenna input. Careful diagnosis reveals that the mutual coupling between the alternating phase waveguides via external half-space is the key factor in reflection accumulation. Amongst all, the slot with strong excitation whose position depends upon the aperture illumination design produces the dominant contribution in the mutual coupling.

  • An Initial Solution Algorithm for Globally Convergent Homotopy Methods

    Yasuaki INOUE  Saeko KUSANOBU  Kiyotaka YAMAMURA  Makoto ANDO  

     
    PAPER

      Vol:
    E87-A No:4
      Page(s):
    780-786

    Finding DC operating points of transistor circuits is an important and difficult task. The Newton-Raphson method adopted in SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. For efficiency of globally convergent homotopy methods, it is important to give an appropriate initial solution as a starting point. However, there are few studies concerning such initial solution algorithms. In this paper, initial solution problems in homotopy methods are discussed, and an effective initial solution algorithm is proposed for globally convergent homotopy methods, which finds DC operating points of transistor circuits efficiently. Numerical examples using practical transistor circuits show the effectiveness of the proposed algorithm.

  • A Transformer between a Thin Post-Wall Waveguide and a Standard Metal Waveguide via a Dielectric Substrate Insertion with Slits Etched on It

    Takafumi KAI  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:1
      Page(s):
    200-203

    This letter proposes a millimeter-wave band transformer to connect a standard waveguide to a very thin post-wall waveguide. The post-wall waveguide height is the same as a microstrip or coplanar line. A dielectric substrate with slits etched on both edges is inserted in the standard waveguide for matching. A 22 GHz transformer gives 3.6% bandwidth for a 0.5 mm-height post-wall waveguide. The effects of various mechanical misalignments upon the frequency characteristics of the reflection are also estimated by analysis and measurements.

  • A Motion Vector Search Algorithm Based on a Simple Search-Block Interpolation Scheme

    Yankang WANG  Makoto ANDO  Tomohiro TANIKAWA  Kazuhiro YOSHIDA  Jun YAMASHITA  Hideaki KUZUOKA  Michitaka HIROSE  

     
    LETTER-Multimedia Systems

      Vol:
    E87-B No:2
      Page(s):
    384-389

    This paper presents a block-based motion vector search algorithm for video coding based on an interpolation scheme of search blocks. The basic idea of motion vector estimation between frames is to select a block in the previous frame that best matches a block in the current frame by minimizing the difference between them. In most of the search algorithms, however, the best-match block can only be on a pre-defined grid pattern. Although using a pre-defined pattern increases the search efficiency, it may also reduce the search accuracy. To balance the two aspects and to fully utilize the block information, we propose a strategy, which, instead of selecting from pre-defined blocks, searches for a best match interpolated from the pre-defined blocks. Experiment results demonstrate a better accuracy and efficiency of this search method than some commonly-used methods for different kinds of motion.

  • An Equivalent Double Layer Model for a Fast Design and Analysis of High Gain-Multilayer Radial Line Slot Antennas

    Tung NGUYEN  Rushanthi JAYAWARDENE  Yasutomo TAKANO  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Osamu AMANO  Shuichi KOREEDA  Takaomi MATSUZAKI  Yukio KAMATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:11
      Page(s):
    2891-2900

    Light weight RLSAs with a honeycomb-type parallel plate are promising candidates for satellite antennas. However, the design of slot lengths and positions in honeycomb RLSAs consisting of a core, skin and adhesive layers involves time-consuming EM analysis. In this paper, an equivalent double layer model is devised for fast slot coupling analysis by the Method of moments (MoM) together with a simplified array design procedure. A fabricated antenna with a diameter of 900mm demonstrates the high directivity of 48.3dBi and a gain of 44.6dBi at 32GHz, with the reflection below -15dB. This antenna weighs only 1.16kg.

  • Step Width Tolerable for Offset of the Aperture in a Millimeter-Wave Transducer between Post-Wall and Hollow Standard Waveguides

    JungAun LEE  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:12
      Page(s):
    1910-1916

    A transducer with a wide step from a post-wall waveguide to a hollow waveguide width is proposed which is tolerant against the aperture offset. The modes in the step width of about 1.50 wavelengths are stable for the aperture offset and the fields are not so perturbed while in the conventional stepped structure with step width of about 1.00 wavelength, the higher evanescent mode of TE30 is excessively enhanced by the aperture offset. The operation of the transducer with the wider step is robust for the fabrication errors in the millimeter wave band. It is also suggested that the anti-symmetrical TE20 mode which is excited only by non-zero offset or the misalignment of the aperture exists in both structures and can not be the dominant factor for the improvement. The transducers are designed and fabricated at 61.25 GHz using PTFE substrate with glass fiber of εr=2.17. The bandwidth for the reflection lower than -15 dB is almost unchanged (6.30-6.60 GHz) for the offset from -0.2 mm to 0.2 mm, while it is degraded in the conventional stepped structure, from 7.65 GHz for no offset to 3.30-5.70 GHz for the same range of the offset.

  • A Study of Aspect Ratio of the Aperture and the Effect on Antenna Efficiency in Oversized Rectangular Slotted Waveguide Arrays

    Hisahiro KAI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna and Propagation

      Vol:
    E87-B No:6
      Page(s):
    1623-1630

    A post-wall waveguide-fed parallel plate slotted array is an attractive candidate for high efficiency and mass producible planar array antennas for millimeter wave applications. For the slot design of this large sized array, a periodic boundary wall model based on the assumption of infinite array size and a parallel waveguide is used. In fact, the aperture is large but still finite (10-40 wavelength) and the TEM-like wave is perturbed due to the narrow walls at the periphery of the aperture as well as the slot coupling; antenna efficiency is affected by the size and the aspect ratio of the aperture. All these observations imply the unique defects of oversized waveguide arrays. In this paper, the aperture efficiency of post-wall waveguide arrays is assessed as a function of size and aspect ratio of the aperture for the first time, both in theory and measurement. An effective field analysis for an electrically large oversized waveguide array, developed by the author, is utilized for determining the slot excitation coefficients and aperture illumination. It is predicted that the oversized waveguide array has a potential efficiency of 80-90% if the aperture is larger than 18 wavelength on a side and the gain is more than 30 dBi. A transversely wide aperture generally provides higher efficiency than a longitudinally long aperture, provided a perfectly uniform TEM wave would be launched from the feed waveguide.

  • Visualization of High Frequency Diffraction Based on Physical Optics

    Tetsu SHIJO  Takayoshi ITOH  Makoto ANDO  

     
    PAPER-Basic Electromagnetic Analysis

      Vol:
    E87-C No:9
      Page(s):
    1607-1614

    High frequency (HF) diffraction is known as local phenomena, and only parts of the scatterer contribute to the field such as the edge, corner and specular reflection point etc. Many HF diffraction techniques such as Geometrical Theory of Diffraction (GTD), Uniform Theory of Diffraction (UTD) and Physical Theory of Diffraction (PTD) utilize these assumptions explicitly. Physical Optics (PO), on the other hand, expresses the diffraction in terms of radiation integral or the sum total of contributions from all the illuminated parts of scatterers, while the PO currents are locally defined at the point of integration. This paper presents PO-based visualization of the scattering and diffraction phenomena and tries to provide the intuitive understanding of local property of HF diffraction as well as the relations between PO and the ray techniques such as GTD, UTD etc. A weighting named "eye function" is introduced in PO radiation integrals to take into account of local cancellation between rapidly oscillating contributions from adjacent currents; this extracts important areas of current distribution, whose location moves not only with the source but also with the observation point. PO visualization illustrates both local property of HF scattering and defects associated with ray techniques. Furthermore, careful examination of visualized image reminds us of the error factor in PO as applied for curved surfaces, named fictitious penetrating rays. They have been scarcely recognized if not for visualization, though they disturb the geometrical shadow behind the opaque scatterer and can be the leading error factors of PO in shadow regions. Finally, visualization is extended to slot antennas with finite ground planes by hybrid use of modified edge representation (MER) to assess the significance of edge diffraction.

  • A Post-Wall Center-Feed Waveguide Circuit Consisting of T-Junctions for Reducing the Slot-Free Area in a Parallel Plate Slot Array Antenna

    Koh HASHIMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1047-1054

    A post-wall center-feed waveguide consisting of T-junctions is proposed for reducing the slot-free area of a parallel plate slot array antenna. The width of the slot-free area is reduced from 2.6 λ0 to 2.1 λ0. A sidelobe level in the E-plane is expected to be suppressed lower than that of the conventional center-feed antenna using cross-junctions. The method of moments with solid-wall replacement designs initially the T-junctions and HFSS including the post surfaces modifies only the reflection cancelling post. We have designed and fabricated a 61.25 GHz model antenna with uniform aperture illumination. The sidelobe level in the E-plane is suppressed to -9.5 dB while that of a conventional cross-junction type is -7.8 dB. Also, we suppress it to -13.8 dB by introducing a -8.3 dB amplitude tapered distribution in the array of the radiation slot pairs.

  • Fabrication of Alternating-Phase Fed Single-Layer Slotted Waveguide Arrays Using Plastic Materials with Metal-Plating Open Access

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:8
      Page(s):
    2761-2763

    Lightweight single-layer slotted waveguide array antennas are fabricated using plastic materials with metal-plating. A plastic material that has good heat-radiation properties is investigated. Three types of antennas are fabricated by milling, using ABS resin, heat-radiating plastic, and aluminum alloy. In measurements, all three types of antennas are confirmed to have almost the same VSWR and gain in the 25 GHz frequency band.

  • Design of Post-Wall Feed Waveguide for a Parallel Plate Slot Array by an Analysis Model with Corrected Solid-Walls

    Koh HASHIMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:6
      Page(s):
    1566-1573

    A novel analysis model for post-wall waveguide T-junctions is proposed. Equivalent solid-walls for the post-walls to have equal guided wavelength are corrected in the analysis model so that the wall thickness for the coupling windows is set to the difference in the width between the post-wall and the solid-wall waveguides. The accuracy of the proposed model is confirmed by comparing it to an HFSS analysis for the real structure of the post-wall waveguide T-junction including the post surfaces. 61.25 GHz model antennas are fabricated for experimental verification. The reflection of the antenna designed by the modified analysis model is suppressed to below -15 dB over a 5.6 GHz bandwidth, while that in the antenna designed by the conventional model is larger than -15 dB around the design frequency.

  • Experimental Evaluation of Intersymbol Interference in Non-Far Region Transmission using a Large Array Antenna in the Millimeter-Wave Band

    Tuchjuta RUCKKWAEN  Takashi TOMURA  Kiyomichi ARAKI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/04/02
      Vol:
    E103-B No:10
      Page(s):
    1136-1146

    Intersymbol interference (ISI) is a significant source of degradation in many digital communication systems including our proposed non-far region communication system using large array antennas in the millimeter-wave band in which the main cause of ISI can be attributed to the path delay differences among the elements of an array antenna. This paper proposes a quantitative method to evaluate the ISI estimated from the measured near-field distribution of the array antenna. The influence of the uniformity in the aperture field distribution in ISI is discussed and compared with an ideally uniform excitation. The reliability of the proposed method is verified through a comparison with another method based on direct measurements of the transmission between the actual antennas. Finally, the signal to noise plus interference is evaluated based on the estimated ISI results and ISI is shown to be the dominant cause of the degradation in the reception zone of the system.

  • Moment Method Analysis of a Plane Wave Generator in an Oversized Rectangular Waveguide

    Takafumi KAI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:1
      Page(s):
    105-113

    This paper presents moment method analysis of a plane wave generator in an oversized rectangular waveguide; its finite size is taken into account. Power divisions of the series of coupling windows and eigenmode excitation coefficients in the oversized waveguide are quantitatively evaluated by the analysis. In order to have a better understanding of array design, the relation between these mode coefficients and the radiation patterns is discussed. Control of the mode coefficients in the oversized waveguide is directly related to the far-field radiation pattern synthesis. These calculated results are verified by measurements in the 61.25 GHz band.

41-60hit(135hit)